Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 1416, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655626

ABSTRACT

The control of the COVID-19 pandemic in the UK has necessitated restrictions on amateur and professional sports due to the perceived infection risk to competitors, via direct person to person transmission, or possibly via the surfaces of sports equipment. The sharing of sports equipment such as tennis balls was therefore banned by some sport's governing bodies. We sought to investigate the potential of sporting equipment as transmission vectors of SARS-CoV-2. Ten different types of sporting equipment, including balls from common sports, were inoculated with 40 µl droplets containing clinically relevant concentrations of live SARS-CoV-2 virus. Materials were then swabbed at time points relevant to sports (1, 5, 15, 30, 90 min). The amount of live SARS-CoV-2 recovered at each time point was enumerated using viral plaque assays, and viral decay and half-life was estimated through fitting linear models to log transformed data from each material. At one minute, SARS-CoV-2 virus was recovered in only seven of the ten types of equipment with the low dose inoculum, one at five minutes and none at 15 min. Retrievable virus dropped significantly for all materials tested using the high dose inoculum with mean recovery of virus falling to 0.74% at 1 min, 0.39% at 15 min and 0.003% at 90 min. Viral recovery, predicted decay, and half-life varied between materials with porous surfaces limiting virus transmission. This study shows that there is an exponential reduction in SARS-CoV-2 recoverable from a range of sports equipment after a short time period, and virus is less transferrable from materials such as a tennis ball, red cricket ball and cricket glove. Given this rapid loss of viral load and the fact that transmission requires a significant inoculum to be transferred from equipment to the mucous membranes of another individual it seems unlikely that sports equipment is a major cause for transmission of SARS-CoV-2. These findings have important policy implications in the context of the pandemic and may promote other infection control measures in sports to reduce the risk of SARS-CoV-2 transmission and urge sports equipment manufacturers to identify surfaces that may or may not be likely to retain transferable virus.


Subject(s)
COVID-19/transmission , SARS-CoV-2/physiology , COVID-19/virology , Half-Life , Humans , Linear Models , SARS-CoV-2/isolation & purification , Sports Equipment , Surface Properties
3.
Int J Sports Med ; 42(12): 1058-1069, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1306501

ABSTRACT

A review of literature on the role of fomites in transmission of coronaviruses informed the development of a framework which was used to qualitatively analyse a cricket case study, where equipment is shared and passed around, and identify potential mitigation strategies. A range of pathways were identified that might in theory allow coronavirus transmission from an infected person to a non-infected person via communal or personal equipment fomites or both. Eighteen percent of potential fomite based interactions were found to be non-essential to play including all contact with another persons equipment. Six opportunities to interrupt the transmission pathway were identified, including the recommendation to screen participants for symptoms prior to play. Social distancing between participants and avoiding unnecessary surface contact provides two opportunities; firstly to avoid equipment exposure to infected respiratory droplets and secondly to avoid uninfected participants touching potential fomites. Hand sanitisation and equipment sanitisation provide two further opportunities by directly inactivating coronavirus. Preventing players from touching their mucosal membranes with their hands represents the sixth potential interruption. Whilst potential fomite transmission pathways were identified, evidence suggests that viral load will be substantially reduced during surface transfer. Mitigation strategies could further reduce potential fomites, suggesting that by comparison, direct airborne transmission presents the greater risk in cricket.


Subject(s)
COVID-19/transmission , Fomites/virology , Pandemics/prevention & control , Sports Equipment , COVID-19/prevention & control , Hand/virology , Humans , Physical Distancing , Touch
4.
Int J Sports Med ; 42(5): 407-418, 2021 May.
Article in English | MEDLINE | ID: covidwho-1054089

ABSTRACT

A review of risk factors affecting airborne transmission of SARS-CoV-2 was synthesised into an 'easy-to-apply' visual framework. Using this framework, video footage from two cricket matches were visually analysed, one pre-COVID-19 pandemic and one 'COVID-19 aware' game in early 2020. The number of opportunities for one participant to be exposed to biological secretions belonging to another participant was recorded as an exposure, as was the estimated severity of exposure as defined from literature. Events were rated based upon distance between subjects, relative orientation of the subjects, droplet generating activity performed (e. g., talking) and event duration. In analysis we reviewed each risk category independently and the compound effect of an exposure i. e., the product of the scores across all categories. With the application of generic, non-cricket specific, social distancing recommendations and general COVID-19 awareness, the number of exposures per 100 balls was reduced by 70%. More impressive was the decrease in the most severe compound ratings (those with two or more categories scored with the highest severity) which was 98% and the reduction in exposures with a proximity <1 m, 96%. Analysis of the factors effecting transmission risk indicated that cricket was likely to present a low risk, although this conclusion was somewhat arbitrary omitting a comparison with a non-cricketing activity.


Subject(s)
Air Microbiology , COVID-19/transmission , Cricket Sport , Physical Distancing , Aerosols , Cough/virology , Environmental Exposure , Humans , Pandemics , Respiration , Risk Factors , SARS-CoV-2 , Sneezing , Social Interaction
SELECTION OF CITATIONS
SEARCH DETAIL